Minimizing Free Energy of Stochastic Functions of Markov Chains
نویسنده
چکیده
Automatic speech recognition has generally been treated as a problem of Bayesian classification. This is suboptimal when the distributions of the training data do not match those of the test data to be recognized. In this paper we propose an alternate analogous classification paradigm, in which classes are modeled by thermodynamic systems, and classification is performed through a minimum energy rule. Bayesian classification is shown to be a specific instance of this paradigm when the temperature of the systems is unity. Classification at elevated temperatures naturally provides a mechanism for dealing with statistical variations between test and training data.
منابع مشابه
Stochastic Dynamic Programming with Markov Chains for Optimal Sustainable Control of the Forest Sector with Continuous Cover Forestry
We present a stochastic dynamic programming approach with Markov chains for optimal control of the forest sector. The forest is managed via continuous cover forestry and the complete system is sustainable. Forest industry production, logistic solutions and harvest levels are optimized based on the sequentially revealed states of the markets. Adaptive full system optimization is necessary for co...
متن کاملStochastic bounds for a single server queue with general retrial times
We propose to use a mathematical method based on stochastic comparisons of Markov chains in order to derive performance indice bounds. The main goal of this paper is to investigate various monotonicity properties of a single server retrial queue with first-come-first-served (FCFS) orbit and general retrial times using the stochastic ordering techniques.
متن کاملENTROPY FOR DTMC SIS EPIDEMIC MODEL
In this paper at rst, a history of mathematical models is given.Next, some basic information about random variables, stochastic processesand Markov chains is introduced. As follows, the entropy for a discrete timeMarkov process is mentioned. After that, the entropy for SIS stochastic modelsis computed, and it is proved that an epidemic will be disappeared after a longtime.
متن کاملRelative Entropy Rate between a Markov Chain and Its Corresponding Hidden Markov Chain
In this paper we study the relative entropy rate between a homogeneous Markov chain and a hidden Markov chain defined by observing the output of a discrete stochastic channel whose input is the finite state space homogeneous stationary Markov chain. For this purpose, we obtain the relative entropy between two finite subsequences of above mentioned chains with the help of the definition of...
متن کاملEvaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes
Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded DNA virus. There were two approaches for prediction of each Markov Model parameter,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015